uqmodels.visualization package
Submodules
uqmodels.visualization.aux_visualization module
- uqmodels.visualization.aux_visualization.aux_adjust_axes(ax, x, y_list, ylim=None, x_lim=None, margin=0.05, x_margin=0.5)[source]
Adjust x/y axis limits based on data and optional explicit limits.
- Parameters:
ax (Axes)
x (array-like)
y_list (array-like or list of array-like) – One or several y-series to consider for limits.
ylim (tuple or None) – If not None, force (ymin, ymax).
x_lim (tuple or None) – If not None, force (xmin, xmax).
margin (float) – Relative margin applied to inferred y-limits (ignored if ylim is set).
x_margin (float) – Margin added around min/max of x (ignored if x_lim is set).
- uqmodels.visualization.aux_visualization.aux_build_data_colors(data, list_anom_ind=None)[source]
Construit la palette de couleurs par canal, en surlignant éventuellement certains indices anormaux.
- uqmodels.visualization.aux_visualization.aux_compute_layout_params(n_score, dim_score, true_label, score2, data, grid_spec=None)[source]
Calcule n_fig, sharey, grid_spec.
- uqmodels.visualization.aux_visualization.aux_create_score_figure(n_fig, sharey, grid_spec, figsize)[source]
Crée la figure et les axes pour la matrice d’anomalies.
- uqmodels.visualization.aux_visualization.aux_fill_area(ax, x, env_bot, env_top, config=None)[source]
Fill an envelope between two curves on an Axes.
- Parameters:
ax (Axes)
x (array-like) – Coordinates and envelope bounds.
env_bot (array-like) – Coordinates and envelope bounds.
env_top (array-like) – Coordinates and envelope bounds.
config (dict, optional) – Style overrides (color, alpha, label).
- uqmodels.visualization.aux_visualization.aux_fill_between(ax, x, y1, y2, where=None, config=None)[source]
Wrapper around ax.fill_between with configurable style.
- Parameters:
ax (Axes)
x (array-like)
y1 (array-like)
y2 (array-like)
where (array-like or None) – Boolean mask for conditional fill.
config (dict, optional) – Style overrides (color, facecolor, alpha, label, interpolate, zorder).
- uqmodels.visualization.aux_visualization.aux_finalize_figure(fig, show_plot=True)[source]
Finalise la figure (tight_layout + show optionnel).
- uqmodels.visualization.aux_visualization.aux_format_time_axis(ax, x_flag, x_date)[source]
Configure l’axe des x comme temporel et éventuellement applique un formatter.
- uqmodels.visualization.aux_visualization.aux_norm_score_inputs(score, f_obs=None, cmap=None)[source]
Normalise score en liste, infère len_score, dim_score, n_score et f_obs.
- uqmodels.visualization.aux_visualization.aux_overlay_score_anoms_on_data(ax, x, data, score, f_obs, dim, threshold=1.0)[source]
Superpose les points où |score| > threshold sur les séries de données.
- uqmodels.visualization.aux_visualization.aux_overlay_setup_grid(ax, setup, n_points)[source]
Superpose la grille channels/sensors sur une matrice de score. setup = (n_chan, n_sensor)
- uqmodels.visualization.aux_visualization.aux_overlay_true_label_on_data(ax, x, data, true_label, f_obs, color='purple')[source]
Superpose les labels vrais sur les séries temporelles.
- uqmodels.visualization.aux_visualization.aux_plot_PIs(ax, x, list_PIs, list_alpha_PIs, list_colors_PIs=['lightblue', 'lightgreen'], list_alpha_fig_PIs=[0.3, 0.15], list_label_PIs=None, config=None)[source]
Plot multiple prediction interval envelopes on an Axes.
- Parameters:
ax (Axes)
x (array-like)
list_PIs (list of array-like) – [low_1, …, low_k, high_k, …, high_1].
list_alpha_PIs (list of float) – Quantile levels for each bound.
list_colors_PIs (list, optional) – Per-interval colors overriding config.
list_alpha_fig_PIs (list, optional) – Per-interval alphas overriding config.
list_label_PIs (list, optional) – Per-interval labels.
config (dict, optional) – Global style config: {“line”: {…}, “fill”: {…}}.
- uqmodels.visualization.aux_visualization.aux_plot_anom(ax, x, y, config=None)[source]
Plot anomalous observations on an Axes using aux_plot_line.
- Parameters:
ax (Axes)
x (array-like) – Coordinates and anomalous values.
y (array-like) – Coordinates and anomalous values.
config (dict, optional) – Style overrides for anomalous points.
- uqmodels.visualization.aux_visualization.aux_plot_conf_score(ax, x, pred, confidence_lvl, label, mode_res=False, config=None)[source]
Plot confidence scores as colored markers on an Axes.
- Parameters:
ax (Axes)
x (array-like) – Coordinates and predictions.
pred (array-like) – Coordinates and predictions.
confidence_lvl (array-like) – Discrete confidence levels (int).
label (list of str) – Legend labels per confidence level.
mode_res (bool, default False) – If True, plot residual scores around zero.
config (dict, optional) – Style overrides (marker, s, edgecolors, linewidth, cmap, zorder_base).
- uqmodels.visualization.aux_visualization.aux_plot_confiance(ax, y, pred, var_A, var_E, born=None, born_bis=None, ylim=None, split_values=-1, x=None, mode_res=False, min_A=0.08, min_E=0.02, env=[0.95, 0.68], config=None, **kwarg)[source]
Plot prediction, uncertainty intervals and anomaly regions on an Axes.
- uqmodels.visualization.aux_visualization.aux_plot_data_timeseries(ax, x, data, f_obs, dim, colors, lw=0.9)[source]
Trace les séries temporelles multicanal.
- uqmodels.visualization.aux_visualization.aux_plot_line(ax, x, y, config=None)[source]
Plot a line (or markers only) on an Axes with configurable style.
- Parameters:
ax (Axes)
x (array-like)
y (array-like)
config (dict, optional) – Keys: color, linestyle, linewidth, marker, markersize, label, zorder.
- uqmodels.visualization.aux_visualization.aux_plot_pred(ax, x, y, pred, config=None)[source]
Plot observations and predictions on a given Axes with optional style config.
- Parameters:
ax (Axes)
x (array-like) – Coordinates, observations, and predictions.
y (array-like) – Coordinates, observations, and predictions.
pred (array-like) – Coordinates, observations, and predictions.
config (dict, optional) – Style overrides for truth line, prediction line, and observation scatter. Keys: “truth_line”, “pred_line”, “obs_scatter”.
- uqmodels.visualization.aux_visualization.aux_plot_score_matrix(ax, score_mat, f_obs, extent, vmin, vmax, cmap, title='score')[source]
Affiche une matrice de score via imshow.
- uqmodels.visualization.aux_visualization.aux_plot_true_label_matrix(ax, true_label, f_obs, extent)[source]
Affiche la matrice de labels vrais.
uqmodels.visualization.old_visualisation module
- uqmodels.visualization.old_visualisation.plot_prediction_interval(y: array, y_pred_lower: array, y_pred_upper: array, X: array | None = None, y_pred: array | None = None, save_path: str | None = None, sort_X: bool = False, **kwargs) None[source]
Plot prediction intervals whose bounds are given by y_pred_lower and y_pred_upper. True values and point estimates are also plotted if given as argument.
- Parameters:
y – label true values.
y_pred_lower – lower bounds of the prediction interval.
y_pred_upper – upper bounds of the prediction interval.
<optionnal> (y_pred) – abscisse vector.
<optionnal> – predicted values.
kwargs – plot parameters.
- uqmodels.visualization.old_visualisation.plot_sorted_pi(y: array, y_pred_lower: array, y_pred_upper: array, X: array | None = None, y_pred: array | None = None, **kwargs) None[source]
Plot prediction intervals in an ordered fashion (lowest to largest width), showing the upper and lower bounds for each prediction. :param y: label true values. :param y_pred_lower: lower bounds of the prediction interval. :param y_pred_upper: upper bounds of the prediction interval. :param X <optionnal>: abscisse vector. :param y_pred <optionnal>: predicted values. :param kwargs: plot parameters.
uqmodels.visualization.visualization module
Visualization module.
- uqmodels.visualization.visualization.aux_get_var_color_sets()[source]
Return the color sets used for percentile envelope visualization in plot_var.
- Returns:
color_full (list of tuple) – Colors for filled regions between percentile curves.
color_full2 (list of tuple) – Colors for percentile boundary lines.
- uqmodels.visualization.visualization.plot_anom_matrice(score, score2=None, f_obs=None, true_label=None, data=None, x=None, vmin=-3, vmax=3, cmap=None, list_anom_ind=None, figsize=(15, 6), grid_spec=None, x_date=False, show_plot=True, setup=None)[source]
Visualize anomaly score matrices and optional ground-truth labels or data.
This function plots one or several anomaly score matrices (e.g., per model or per transformation), an optional secondary anomaly score matrix, optional ground-truth anomaly labels, and optional multichannel time series data. It supports contextual segmentation, date-based x-axes, sensor/channel structural overlays, and anomaly highlighting. The function preserves its original API while delegating rendering to modular helpers.
- Parameters:
score (array-like or list of array-like) – Primary anomaly score matrix or list of matrices. Each matrix must be of shape (n_samples, n_features).
score2 (array-like, optional) – Secondary anomaly score matrix of shape (n_samples, n_features).
f_obs (array-like, optional) – Indices of samples to visualize; defaults to all.
true_label (array-like, optional) – Ground-truth anomaly labels of shape (n_samples, n_features).
data (array-like, optional) – Multichannel time series of shape (n_samples, n_features), used for overlaying raw data and score-based anomaly markers.
x (array-like, optional) – X-axis values. If None, integer indices are used. If datetime-like, the function automatically switches to a date axis.
vmin (float, default=(-3, 3)) – Color limits for the anomaly score colormap.
vmax (float, default=(-3, 3)) – Color limits for the anomaly score colormap.
cmap (Colormap, optional) – Colormap for score matrices. If None, a default diverging map is used.
list_anom_ind (list of int, optional) – Indices of features/sensors to highlight in the time-series panel.
figsize (tuple, default=(15, 6)) – Figure size in inches.
grid_spec (array-like, optional) – Height ratios for subplot layout. If None, all subplots have equal height.
x_date (bool, default=False) – If True, the x-axis is formatted as a date axis (dd/mm HH:MM).
show_plot (bool, default=True) – Whether to display the resulting figure.
setup (tuple, optional) – Tuple (n_channel_per_sensor, n_sensor) enabling structural overlays (horizontal grid lines) on score matrices for multi-sensor setups.
Notes
- The function supports:
multiple score matrices displayed in stacked subplots,
contextual slicing when x contains datetime values,
ground-truth anomaly maps,
multichannel data with anomaly highlighting,
optional highlighting of anomalous sensor indices.
Rendering is internally modularized via helper functions to improve clarity and maintainability, while keeping the public API identical.
- Returns:
The function creates the figure and optionally displays it.
- Return type:
None
- uqmodels.visualization.visualization.plot_pi(y, y_pred, y_pred_lower, y_pred_upper, mode_res=False, f_obs=None, X=None, size=(12, 2), name=None, show_plot=True, config=None, ylim=None, xlim=None, **kwargs)[source]
Plot prediction intervals (PI) together with observations and predictions.
Displays observed values, predicted values, and their prediction interval (upper/lower bounds). Optionally plots residuals instead of absolute values (mode_res=True). Observations falling outside the PI are highlighted. Parameter f_obs selects which observation indices to display.
- uqmodels.visualization.visualization.plot_var(Y, data_full, variance, impact_anom=None, anom=None, f_obs=None, dim=(400, 20, 3), g=0, res_flag=False, fig_s=(20, 3), title=None, ylim=None)[source]
Plot empirical variance envelopes around a univariate time series.
This function builds a set of percentile-based envelopes from the provided variance and overlays them on the original (or residual) series together with anomaly markers. It visualizes how the variance translates into coverage levels for a given component of a multivariate signal.
- Parameters:
Y (array-like) – Ground-truth series of shape (n_samples, n_dim).
data_full (array-like) – Reference series used to construct the envelopes, same shape as Y.
variance (array-like) – Point-wise variance of shape (n_samples, n_dim) for the selected component.
impact_anom (array-like, optional) – Anomaly impact indicator of shape (n_samples, n_dim). Non-zero entries are flagged as anomalies.
anom (array-like, optional) – Unused placeholder kept for backward compatibility.
f_obs (array-like, optional) – Indices of samples to visualize. If None, all samples are used.
dim (tuple, default=(400, 20, 3)) – Unused placeholder describing (n_samples, n_time, n_groups). Kept for backward compatibility.
g (int, default=0) – Index of the dimension (component) to plot.
res_flag (bool, default=False) – If True, envelopes are computed around data_full - data_full (i.e. residuals), otherwise around data_full.
fig_s (tuple, default=(20, 3)) – Figure size in inches.
title (str, optional) – Figure title.
ylim (tuple, optional) – Manual y-axis limits (ymin, ymax). If None, limits are inferred from the outer envelopes.
- Returns:
per (list of np.ndarray) – List of envelope curves (one array per percentile in per_list).
per_list (list of float) – Percentile levels used to build the envelopes.
- uqmodels.visualization.visualization.uncertainty_plot(y, output, context=None, size=(15, 5), f_obs=None, name='UQplot', mode_res=False, born=None, born_bis=None, dim=0, confidence_lvl=None, list_percent=[0.8, 0.9, 0.99, 0.999, 1], env=[0.95, 0.65], type_UQ='old', show_plot=True, with_colorbar=False, **kwarg)[source]
Visualize uncertainty diagnostics for multivariate predictive models.
This function plots observations, predictions, prediction intervals, aleatoric/epistemic uncertainty contributions, confidence-level scores, optional anomaly bounds, and context-based segmentations. It supports multi-output signals, multiple contextual partitions, residual mode, and both full UQ views and data-only views. The function preserves the original API and integrates with modular visualization helpers (aux_*).
- Parameters:
y (array-like) – Ground-truth observations of shape (n_samples, n_dim).
output (tuple or None) – UQ model outputs. Either (pred, var_A, var_E) or (pred, (var_A, var_E)), depending on type_UQ. Set to None in data-only mode.
context (array-like, optional) – Context matrix used for splitting the plot by contextual dimension or highlighting contextual regions.
size (tuple, default=(15, 5)) – Figure size in inches.
f_obs (array-like, optional) – Indices of samples to display; defaults to all.
name (str, default="UQplot") – Figure suptitle.
mode_res (bool, default=False) – If True, plot residuals instead of raw values.
born (tuple of array-like, optional) – Lower and upper anomaly bounds for each dimension.
born_bis (tuple of array-like, optional) – Secondary set of anomaly bounds.
dim (int or list of int, default=0) – Target output dimensions to visualize.
confidence_lvl (array-like, optional) – Precomputed confidence-level matrix. If None, it is computed internally.
list_percent (list of float, default=[0.8, 0.9, 0.99, 0.999, 1]) – Confidence thresholds used to compute epistemic confidence levels.
env (list of float, default=[0.95, 0.65]) – Default uncertainty envelopes for plotting.
type_UQ ({"old", "var_A&E"}, default="old") – Format specification of output.
show_plot (bool, default=True) – Whether to display the final figure.
with_colorbar (bool, default=False) – Whether to add a confidence-level colorbar.
**kwarg – Additional parameters, including: - “ind_ctx”: context values to include, - “split_ctx”: context dimension used for splitting subplots, - “ylim”: vertical limits, - “var_min”: minimum (var_A, var_E) values, - “only_data”: disable UQ & plot observations only, - “x”: explicit x-axis values, - “ctx_attack”: tuple defining contextual highlight rules, - “list_name_subset”: labels for contextual annotations.
Notes
This function acts as a high-level orchestrator and delegates rendering to modular visualization helpers (aux_plot_confiance, aux_plot_conf_score, aux_plot_line, aux_fill_between, etc.).
The input API is preserved for backward compatibility.
- Returns:
The function creates a figure and optionally displays it.
- Return type:
None
uqmodels.visualization.visualization_mutisource module
Visualization_multisource module.
- uqmodels.visualization.visualization_mutisource.apply_cmap(val, vmin, vmax, cmap)[source]
Transform valyes array into color values array using cmap and considering bound [vmin,vmax]
- Parameters:
val (array) – Values to turn to color
vmin (float) – min_val
vmax (float) – max_val
cmap (cmap) – matplotlib cmap
- Returns:
Array of color
- Return type:
_type_
- uqmodels.visualization.visualization_mutisource.compute_dev_score(val, y, vmin, vmax)[source]
Compute signed relative errors
- Parameters:
val (array) – Prediction
y (array) – Target
vmin (float) – negative minimum sensitivité
vmax (float) – positive minimun sensitivity
- Returns:
signed relative errors.
- Return type:
r
- uqmodels.visualization.visualization_mutisource.load_and_select(storing, keys, x_min, x_max)[source]
- uqmodels.visualization.visualization_mutisource.load_from_metadata(storing, str_keys_metadata)[source]
- uqmodels.visualization.visualization_mutisource.plot_analysis(storing_data, storing_res, sensors_mask, x_min, x_max, figsize=(20, 4), matplot=True)[source]
- uqmodels.visualization.visualization_mutisource.plot_anom_mat(storing_data, storing_res, sensors_mask, x_min, x_max, figsize=(20, 12), metadata=None)[source]
- uqmodels.visualization.visualization_mutisource.plot_channel(storing_data, storing_res, sensors_mask, x_min, x_max, mode=None, figsize=(20, 4), canal_nature=['Mean', 'Std', 'ExT'])[source]