uqmodels.visualization packageο
Submodulesο
uqmodels.visualization.visualization moduleο
Visualization module.
- uqmodels.visualization.visualization.aux_plot_PIs(ax, x, list_PIs, list_alpha_PIs, list_colors_PIs=None, list_alpha_fig_PIs=None, list_label_PIs=None)[source]ο
Plot PIs enveloppe on ax suplot
- Parameters:
ax (_type_) β ax suplot
x (_type_) β x_scale
list_PIs (_type_) β list of PIs ordered from minumum to maximum: ex [PI_low_1,PI_low_2,PI_high_2,PI_high_1]
list_alpha (_type_) β List of alpha of PIs
list_colors_PIs (list, optional) β List of color by pair. Defaults to None -> use grey.
list_alpha_PIs (_type_, optional) β List of color by pair. Defaults to None -> 0.2 as transparancy
- uqmodels.visualization.visualization.aux_plot_conf_score(ax, x, pred, confidence_lvl, label, mode_res=False)[source]ο
- uqmodels.visualization.visualization.aux_plot_confiance(ax, y, pred, var_A, var_E, born=None, born_bis=None, ylim=None, split_values=-1, x=None, mode_res=False, min_A=0.08, min_E=0.02, env=[0.95, 0.68], **kwarg)[source]ο
- uqmodels.visualization.visualization.dim_1d_check(y)[source]ο
Reshape (n,1) 2D array to (n) 1D array else do nothing
- uqmodels.visualization.visualization.plot_anom_matrice(score, score2=None, f_obs=None, true_label=None, data=None, x=None, vmin=-3, vmax=3, cmap=None, list_anom_ind=None, figsize=(15, 6), grid_spec=None, x_date=False, show_plot=True, setup=None)[source]ο
Plot score_anomalie matrice and true label if there is. :param score: Anomaly score matrice or list of Anomaly matrix :type score: _type_ :param f_obs: mask_focus :type f_obs: _type_, optional :param true_label: True label or None :type true_label: _type_, optional :param vmin: _description_. Defaults to -3. :type vmin: int, optional :param vmax: _description_. Defaults to 3. :type vmax: int, optional :param cmap: _description_. Defaults to None. :type cmap: _type_, optional :param figsize: _description_. Defaults to (15, 6). :type figsize: tuple, optional
- uqmodels.visualization.visualization.plot_pi(y, y_pred, y_pred_lower, y_pred_upper, mode_res=False, f_obs=None, X=None, size=(12, 2), name=None, show_plot=True)[source]ο
- uqmodels.visualization.visualization.plot_prediction_interval(y: array, y_pred_lower: array, y_pred_upper: array, X: array | None = None, y_pred: array | None = None, save_path: str | None = None, sort_X: bool = False, **kwargs) None [source]ο
Plot prediction intervals whose bounds are given by y_pred_lower and y_pred_upper. True values and point estimates are also plotted if given as argument.
- Parameters:
y β label true values.
y_pred_lower β lower bounds of the prediction interval.
y_pred_upper β upper bounds of the prediction interval.
<optionnal> (y_pred) β abscisse vector.
<optionnal> β predicted values.
kwargs β plot parameters.
- uqmodels.visualization.visualization.plot_sorted_pi(y: array, y_pred_lower: array, y_pred_upper: array, X: array | None = None, y_pred: array | None = None, **kwargs) None [source]ο
Plot prediction intervals in an ordered fashion (lowest to largest width), showing the upper and lower bounds for each prediction. :param y: label true values. :param y_pred_lower: lower bounds of the prediction interval. :param y_pred_upper: upper bounds of the prediction interval. :param X <optionnal>: abscisse vector. :param y_pred <optionnal>: predicted values. :param kwargs: plot parameters.
- uqmodels.visualization.visualization.plot_var(Y, data_full, variance, impact_anom=None, anom=None, f_obs=None, dim=(400, 20, 3), g=0, res_flag=False, fig_s=(20, 3), title=None, ylim=None)[source]ο
- uqmodels.visualization.visualization.provide_cmap(mode='bluetored')[source]ο
Generate a bluetored or a cyantopurple cutsom cmap
- Parameters:
mode (str, optional) β Values: bluetoredβ or βcyantopurple β
- Returns:
Colormap matplotlib
- uqmodels.visualization.visualization.show_dUQ_refinement(UQ, y=None, d=0, f_obs=None, max_cut_A=0.99, q_Eratio=2, E_cut_in_var_nominal=False, A_res_in_var_atypic=False)[source]ο
- uqmodels.visualization.visualization.uncertainty_plot(y, output, context=None, size=(15, 5), f_obs=None, name='UQplot', mode_res=False, born=None, born_bis=None, dim=0, confidence_lvl=None, list_percent=[0.8, 0.9, 0.99, 0.999, 1], env=[0.95, 0.65], type_UQ='old', show_plot=True, with_colorbar=False, **kwarg)[source]ο
uqmodels.visualization.visualization_mutisource moduleο
Visualization_multisource module.
- uqmodels.visualization.visualization_mutisource.apply_cmap(val, vmin, vmax, cmap)[source]ο
Transform valyes array into color values array using cmap and considering bound [vmin,vmax]
- Parameters:
val (array) β Values to turn to color
vmin (float) β min_val
vmax (float) β max_val
cmap (cmap) β matplotlib cmap
- Returns:
Array of color
- Return type:
_type_
- uqmodels.visualization.visualization_mutisource.compute_dev_score(val, y, vmin, vmax)[source]ο
Compute signed relative errors
- Parameters:
val (array) β Prediction
y (array) β Target
vmin (float) β negative minimum sensitivitΓ©
vmax (float) β positive minimun sensitivity
- Returns:
signed relative errors.
- Return type:
r
- uqmodels.visualization.visualization_mutisource.load_and_select(storing, keys, x_min, x_max)[source]ο
- uqmodels.visualization.visualization_mutisource.load_from_metadata(storing, str_keys_metadata)[source]ο
- uqmodels.visualization.visualization_mutisource.plot_analysis(storing_data, storing_res, sensors_mask, x_min, x_max, figsize=(20, 4), matplot=True)[source]ο
- uqmodels.visualization.visualization_mutisource.plot_anom_mat(storing_data, storing_res, sensors_mask, x_min, x_max, figsize=(20, 12), metadata=None)[source]ο
- uqmodels.visualization.visualization_mutisource.plot_channel(storing_data, storing_res, sensors_mask, x_min, x_max, mode=None, figsize=(20, 4), canal_nature=['Mean', 'Std', 'ExT'])[source]ο