uqmodels.evaluation packageο
Submodulesο
uqmodels.evaluation.base_metrics moduleο
Metrics module for UQ method evaluation.
- uqmodels.evaluation.base_metrics.interval_score(y_true, y_pred_lower, y_pred_upper, alpha)[source]ο
uqmodels.evaluation.evaluation moduleο
uqmodels.evaluation.metrics moduleο
- class uqmodels.evaluation.metrics.Encapsulated_metrics[source]ο
Bases:
ABC
Abstract Encapsulated Metrics class : Allow generic manipulation of metrics with output specifyied format
- class uqmodels.evaluation.metrics.Generic_metric(ABmetric, name='Metric', mask=None, list_ctx_constraint=None, reduce=True, **kwarg)[source]ο
Bases:
Encapsulated_metrics
- uqmodels.evaluation.metrics.UQ_Gaussian_NLL(y, output, set_, mask, reduce, type_UQ='var', mode=None, **kwarg)[source]ο
Compute Neg likelihood by transform UQ into sigma using guassian assumption
- Parameters:
y (np.array) β Targets/observation
output (np.array) β modeling output : (y,UQ)
set (list of mask) β subset specification
mask (bool array) β mask the last dimension
reduce (bool) β apply reduction
type_UQ (str, optional) β _description_. Defaults to βvarβ.
mode (_type_, optional) β _description_. Defaults to None.
- Returns:
_description_
- Return type:
val
- uqmodels.evaluation.metrics.UQ_absolute_residu_score(y, output, set_, mask, reduce, type_UQ='var', mode=None, **kwarg)[source]ο
Compute absolute residu score from UQ,pred,y
- Parameters:
y (np.array) β Targets/observation
output (np.array) β modeling output : (y,UQ)
set (list of mask) β subset specification
mask (bool array) β mask the last dimension
reduce (bool) β apply reduction
type_UQ (str, optional) β _description_. Defaults to βvarβ.
mode (_type_, optional) β _description_. Defaults to None.
- Returns:
val
- Return type:
val
- uqmodels.evaluation.metrics.UQ_average_coverage(y, output, set_, mask, reduce, type_UQ='var', alpha=0.045, mode='UQ', **kwarg)[source]ο
Compute data coverage by transform UQ into (1-alpha)% coverage PIs
- Parameters:
y (np.array) β Targets/observation
output (np.array) β modeling output : (y,UQ)
set (list of mask) β subset specification
mask (bool array) β mask the last dimension
reduce (bool) β apply reduction
type_UQ (str, optional) β _description_. Defaults to βvarβ.
alpha (float, optional) β _description_. Defaults to 0.045.
mode (str, optional) β _description_. Defaults to βUQβ.
- Returns:
_description_
- Return type:
_type_
- uqmodels.evaluation.metrics.UQ_dEI(y, output, set_, mask, reduce, type_UQ='var_A&E', **kwarg)[source]ο
disentangled epistemic indicator from pred,UQ that provide insight about model unreliability
- Parameters:
y (np.array) β Targets/observation
output (np.array) β modeling output : (y,UQ)
set (list of mask) β subset specification
mask (bool array) β mask the last dimension
reduce (bool) β apply reduction
- Returns:
array of metrics values
- Return type:
val
- uqmodels.evaluation.metrics.UQ_heteroscedasticity_ratio(y, output, set_, mask, reduce, type_UQ='var', mode=None, **kwarg)[source]ο
Compute ratio by transform UQ into sigma using guassian assumption
- Parameters:
y (np.array) β Targets/observation
output (np.array) β modeling output : (y,UQ)
set (list of mask) β subset specification
mask (bool array) β mask the last dimension
reduce (bool) β apply reduction
type_UQ (str, optional) β _description_. Defaults to βvarβ.
mode (_type_, optional) β _description_. Defaults to None.
- Returns:
_description_
- Return type:
val
- uqmodels.evaluation.metrics.UQ_sharpness(y, output, set_, mask, reduce, type_UQ='var', **kwarg)[source]ο
Compute sharpness by transform UQ into 95% coverage PIs then compute size of PIs.
- Parameters:
y (np.array) β Targets/observation
output (np.array) β modeling output : (y,UQ)
set (list of mask) β subset specification
mask (bool array) β mask the last dimension
reduce (bool) β apply reduction
type_UQ (str, optional) β _description_. Defaults to βvarβ.
- Returns:
_description_
- Return type:
_type_
- uqmodels.evaluation.metrics.anom_score(y, output, set_, mask, reduce, type_output='all', min_A=0.08, min_E=0.02, **kwarg)[source]ο
- uqmodels.evaluation.metrics.calibrate_var(y, output, set_, mask, reduce, type_output='all', alpha=0.955, **kwarg)[source]ο
- uqmodels.evaluation.metrics.confidence_score(y, output, set_, mask, reduce, type_output='all', min_A=0.08, min_E=0.02, **kwarg)[source]ο
- uqmodels.evaluation.metrics.dEI(y, output, set_, mask, reduce, type_output='all', **kwarg)[source]ο
- uqmodels.evaluation.metrics.rmse(y, output, set_, mask, reduce, **kwarg)[source]ο
Root mean square error metrics
- Parameters:
y (np.array) β Targets/observation
output (np.array) β modeling output : (y,UQ)
set (list of mask) β subset specification
mask (bool array) β mask the last dimension
reduce (bool) β apply reduction
- Returns:
rmse values
- Return type:
val