tadkit.catalog.learners packageο
Module contentsο
- tadkit.catalog.learners.IsolationForestLearnerο
alias of
IsolationForest
- tadkit.catalog.learners.KernelDensityLearnerο
alias of
KernelDensity
- class tadkit.catalog.learners.ScaledKernelDensityLearner(scaling='standard')[source]ο
Bases:
PipelineLearner class wrapped from scikit-learnβs KernelDensity class, with a scaler preprocessor.
- params_description = {'scaling': {'description': 'Scaling method', 'family': 'scaling', 'set': ['quantile_normal', 'standard'], 'value_type': 'choice'}}ο
- required_properties = []ο
- set_score_request(*, sample_weight: bool | None | str = '$UNCHANGED$') ScaledKernelDensityLearnerο
Configure whether metadata should be requested to be passed to the
scoremethod.Note that this method is only relevant when this estimator is used as a sub-estimator within a meta-estimator and metadata routing is enabled with
enable_metadata_routing=True(seesklearn.set_config()). Please check the User Guide on how the routing mechanism works.The options for each parameter are:
True: metadata is requested, and passed toscoreif provided. The request is ignored if metadata is not provided.False: metadata is not requested and the meta-estimator will not pass it toscore.None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.New in version 1.3.
- sample_weightstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
sample_weightparameter inscore.
- selfobject
The updated object.