tadkit.catalog.learners packageο
Module contentsο
- tadkit.catalog.learners.IsolationForestLearnerο
alias of
IsolationForest
- tadkit.catalog.learners.KernelDensityLearnerο
alias of
KernelDensity
- class tadkit.catalog.learners.ScaledKernelDensityLearner(scaling='standard')[source]ο
Bases:
Pipeline
Learner class wrapped from scikit-learnβs KernelDensity class, with a scaler preprocessor.
- params_description = {'scaling': {'description': 'Scaling method', 'family': 'scaling', 'set': ['quantile_normal', 'standard'], 'value_type': 'choice'}}ο
- required_properties = []ο
- set_score_request(*, sample_weight: bool | None | str = '$UNCHANGED$') ScaledKernelDensityLearner ο
Configure whether metadata should be requested to be passed to the
score
method.Note that this method is only relevant when this estimator is used as a sub-estimator within a meta-estimator and metadata routing is enabled with
enable_metadata_routing=True
(seesklearn.set_config()
). Please check the User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed toscore
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it toscore
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.New in version 1.3.
- sample_weightstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
sample_weight
parameter inscore
.
- selfobject
The updated object.
- steps: List[Any]ο