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This document contains the theoretical sources related to the work on uncertainty quantification

decomposed on ML/deep learning model for regression and anomaly detection.

A Uncertainty in Regression task

Let us consider a modeling framework, in which random variables (denoted ε) are linked to specific
uncertainty sources. Here, time series forecasting (link to the type of data on which the work was under-
taken) is treated as a regression problem based on time-dependent features. In this context, a model f̂
aims to predict the nominal behavior for variables of interest represented by univariate/multivariate time
series Y = (y1, . . . , yt , . . . , yT ). The forecast at time step t for the variable yt will be based on a vector of
observed variables xt composed of variables exogenous ct and lagged response Y past

t = (yt−l ag , . . . , yt−1)
variables, as well as some latent variables ht :

yt = f (xt )+εut with; εut ∼N (0,σu
t (xt ,ht )) ; xt = {ct ,Y past

t }

with f (xt ) the average explainable signal, and εu
t a time-dependent Gaussian noise (local homo-

geneity assumption). The latter is associated with upstream irreducible variability, encompassing both
intrinsic, measurement noises and pre-modeling noise arising from limits of the modeling scope (e.g.
due to the influence of hidden variables ht that cannot be captured through lagged temporal variables
Y

past
t ).

The ML model f̂θ aims to approximate the explainable part f of the target y using observed variables
x from a training set Dθ = (x1, y1), .., (xn , yn), a subset of the dataset D. θ is the set of parameters obtained
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using the training set Dθ, overΘ indicating the whole set of parameters linked to all subsets of the dataset
D. According to the bias-variance trade-off (Eq.1), we decompose all error sources between yt and f̂θ(xt ):

EΘ

[
(yt − f̂θ(xt ))2]=EΘ

[
f̂θ(xt )− f (xt )

]2 +EΘ

[(
EΘ

[
f̂θ(xt )

]− f̂θ(xt )
)
)2]+Ey

[
(yt − f (xt ))2]

= (
f ∗
Θ (xt )− f (xt )

)2︸ ︷︷ ︸
Bias

+EΘ

[(
f ∗
Θ (xt )− f̂θ(xt )

)2
]

︸ ︷︷ ︸
Variance

+ σu
t︸︷︷︸

Intrinsic variability

, (1)

with f ∗
Θ =EΘ[ f̂θ(xt )], the average function given the distributionΘ. Among the three above-mentioned

error sources, the variance can be explained by a noise εθt which corresponds to the gap between the
average function over Θ and the ML model: εθt = f ∗

Θ (xt )− f̂θ(xt ). This epistemic noise is related to insuf-
ficient observations and could be reduced by gathering more data. The bias requires another random
variable εΘt linked to the gap between the average explainable signal and the average function over Θ:
εΘt = f (xt )− f ∗

Θ (xt ). This noise, due to the modeling constraint over Θ, is irreducible in the modeling
scope. Finally, the intrinsic variability is related to the irreducible noise εu

t that appears upstream of
the modeling scope. It quantifies a lower bound for the expected error in the test data with both infi-
nite data and unconstrained modeling. To show the relation between the introduced random variables
and the epistemic/aleatoric concepts, we inject them into the total uncertainty law [8] in Eq.11. After
simplification allowed by strong independence and zeros-mean assumptions:

With yt = fθ(xt )+εθt +εΘt +εu
t and σ(yt |xt ;θ) =σΘ

[
Ey (yt |xt ;θ)

]+EΘ

[
σy (yt |xt ;θ)

]=σE
t +σA

t

We obtain σE
t =σΘ

[
f̂θ(xt )

]=EΘ

[(
εθt

)2
]

, σA
t =σy (εu

t )+σy (εΘt )
(2)

From these equations, we can see that the decomposition into epistemic and aleatoric components
(denoted by E and A superscripts) requires the manipulation of the whole set of parameters Θ. As ex-
pected, the epistemic part is essentially made up of the variance error caused by the sampling of the
training set. However, the aleatoric part contains several quantities that are all irreducible in the model-
ing scope but may be associated with different sources: upstream modeling scope (intrinsic, measure-
ment, and pre-modeling noise), and model constraints which also cause bias. When we move slightly
outside the domain of validity of the assumptions (due to limited training data and approximate manip-
ulation ofΘ), the previous negligible terms can then induce blurs into the uncertainty decomposition.

View of an unified dUQ framework: The functional scheme of the proposed dUQ framework incor-
porating various UQ paradigms is shown in Fig. 2. It is based on a metamodel MΘ that learns and
manipulates diverse submodels ( f̂θ) to combine their inferences. The learning phase aims to capture
the explainable variability and estimate irreducible variability while exploring a diversity of submodel
candidates Θ. To ensure diversity and avoid submodel redundancy, a variability infusion mechanism
(depending on the UQ paradigm) is needed during the learning phase. The estimated submodels pro-
duce, at the inference step, a local regressor f̂θ(xt ) and an estimation of aleatoric variability σ̂a( fθ(xt )).
Furthermore, an epistemic variability σ̂e

t is produced by computing the variability of the submodel re-
gression ŷt (using for example a Gaussian assumption). Finally, the metamodel provides a risk-aware
forecast comprising three indicators: µt ,σa

t , σ̂e
t expressing forecast, aleatoric and epistemic indicators.

As can be seen in Fig. 1, these indicators correspond to three independent axes on how the model per-
ceives the data regarding forecast and sources of uncertainty. We can use them to design confidence
intervals, error margins, or warnings highlighting a lack of model confidence.
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Figure 1: Theoretical disentangled Uncertainty Quantification (dUQ) indicators space

Figure 2: Illustration of a metamodel using Gaussian Aleatoric and Epistemic assumptions.

A.1 Detailed explanation of a disentangled uncertainty quantification formalism :

Submodels are functions f = { f θ
1
, . . . , f θ

m
} parameterized by θ that allow the local estimation of a deci-

sion function and its irreducible (Aleatoric) variability εAt around the time stamp t . We have seen that
this quantity explains the inherent noise in the data, which could not be explained during the training of
the models but could be measured at each time stamp t for submodel k:

εAt ∼N (0,σa
t ) : σa

t =
∫

(yt −µt )2 f θ(xt )d y =
∫

(yt − µ̂t )2 f θ
k

(xt )d y = σ̂a
t . (3)
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Such mechanisms take various forms in the literature (Bayesian model, Frequentist or Set-based ap-
proach) under different hypotheses (distribution assumption, moment estimation, quantiles, etc.). With
a local Gaussian Aleatoric assumption justified by the application of central limit theorem on the ob-
served variables, our submodels estimate the conditional probability distribution of the target variable
from the observed variables.

θk = argmin
θ

T∑
t=1

Loss(yt , µ̂θt , σ̂aθ
t ) , Pθk (yt |xt ) ∼N (µ̂k

t , σ̂a k
t )

The metamodel M θ is composed of a submodel ensemble (or submodel family). To specify a well-
constructed metamodel, we have to introduce an abstract set Ω: the family of reachable functions (that
can be approximated by the type of selected model) and relevant submodels regarding a standard ML
framework S. Then, the metamodel generates, manipulates, and enhances this ensemble of submodels
through four following steps:

1. The generation of the submodels ensemble is realized by introducing variability during param-
eter optimization θ through a variability infusion mechanism δ, which takes different forms depend-
ing on the UQ-paradigm. The mechanisms of our four evaluated approaches can be interpreted as
bagging/bootstrap (Ensemble), local minimum convergence (Deep Ensemble), binomial probabilistic
weight (MCDP), or parameterization evidence-based (EDL). Mathematically, this is often achieved by
disturbing the learning process (eq. 4) to generate submodel variants. To avoid having redundant sub-
models (lack of diversity) or coarse estimations (lack of accuracy), the metamodel has to be well-defined
meaning:

{M θ =M{θ1,...,θm } with θk ∈Ω | θk = argmin
θ

Loss(Y , f θ(x),δ(Y , X , f θ))} With (4)

• Considerable diversity of the submodels: ∀(k,k ′) with k ̸= k ′, d(θk ,θk ′
) > ε

• Acceptable accuracy and generalization capacity of submodels: ∀k ∈ [1,m], f θ
k ∈Ω

2. Average model extrapolation could be virtually computed through the average decision and the
average aleatoric indicator of the submodels ensemble in a Gaussian aleatoric assumption.

µt =
1

m

m∑
k=1

µ̂k
t , σa

t =
√

1

m

m∑
k=1

(σ̂a k
t )2 (5)

3. Epistemic estimation εEt allows for local estimation of uncertainty through the metamodel sub-
models. Epistemic confidence can then be interpreted 1 as the likelihood of the average submodel deci-
sion (µt ) over the metamodel. Under the well-formed ensemble assumption for a regression task, local

decision estimators f θ
k

are centred with respect to the local meanµt and have independent errors. Then,
a Gaussian epistemic assumption2 allows the use of the following unbiased empirical variance estima-
tors.

εEt ∼N (0,σe
t ) : σe

t ≈ σ̂e
t =

√
1

m +1

m∑
k=1

(µ̂k
t −µt )2 (6)

4. Metamodel output can express a decision and estimate its forecast uncertainty, M{θk }m
k=1

(xt ) ∼
N (µt , σ̂t ) corresponding to the combination of aleatoric and epistemic uncertainties σ̂2

t = σa 2
t + σ̂e 2

t .

1More information in Section 3 of supplementary materials
2Thanks to unbiased (target-centred) models with independent errors
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It should be noticed that there is a high correlation between the epistemic and aleatoric uncertainty
indicators: the model error increases with high irreducible uncertainty. To better exploit local epistemic
variability, we propose the dE-Indicator1 corresponding to a Negative Ratio of Epistemic under Total

Log-Likelihoods through Aleatoric and Epistemic Gaussian assumptions: I e
t =−l n(1+ σ̂a 2

t

σe 2
t

)

Additional remarks Two additional remarks should be made. First, the dUQ framework may be ex-
tended with other Aleatoric and Epistemic assumptions (distribution law, quantile, other kinds of mo-
ments). These extensions will lead to three main issues: submodel aleatoric estimation, submodel aggre-
gation, and epistemic extraction from the ensemble. Secondly, this framework “contains” the standard
Machine Learning (ML) approaches if they are formalized under the constant aleatoric assumption and
total confidence in the unique submodel. It also “contains” other classical ML Uncertainty Quantifi-
cation (UQ) focusing on Aleatoric or Epistemic if formalized under the assumption that neglecting the
other part.

B Anomaly score :

One standard way of characterizing abnormal behavior in a time series is to analyze the deviation, the
difference between the observation and the behavior expected according to a model making a nomi-
nal prediction. It allows producing anomaly score based on prediction residuals. Then, it is possible to
include consideration of an Uncertainty measure the score by creating a Z-score by normalizing the de-
viation based on the uncertainty to obtain a contextual anomaly score. In what follows, we propose a
contextual anomaly score desgin including uncertainty, aléatorics and epistemics :

The design of the score anomaly (St ) is then based on three terms :

• The absolute deviation (rt ) measures the normality of a sample.

• β-level confidence interval threshold σ̂
β
t discriminate local statistical anomalies using local variability

estimated by the model.

• α-level model risk penalization (penE ,α
t ) allows handling of predictions with low epistemic reliability.

St = si g n(rt )∗ |rt |+penE ,α
t

σ̂
β
t

:


rt = (yt − ŷt )

σ̂
β
t = β∗

√
σ̂A2

t + σ̂E 2

t

penE ,α
t = α∗ σ̂E

t

(7)

St =
(yt −M (xt ))±penE ,α

t

σ̂
β
t

= ea
t

σ̂
β
t︸︷︷︸

C t x devi ati on

± εA
t

σ̂
β
t︸︷︷︸

Dat a Noi se

± Bt +εE
t

σ̂
β
t︸ ︷︷ ︸

Model Noi se

± penE ,α
t

σ̂
β
t︸ ︷︷ ︸

Model r i sk

(8)

The following 3 assumptions allow us to make optimal use of the score:

(i ) Rare and significant anomaly : ∀ ti wi th ti i s anom, ea
ti
≫ σ̂

β
ti

(i I ) good σ-estimator : ∀ (ti , t ) wi th ti i s anom,
ea

ti

σ̂
β
ti

≫ εA
t +εE

t

σ̂
β
t

(i i i ) good µ-estimator : σ̂
β
t > Bt and Bt ⇒ 0

(9)
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Under the hypotheses described by formula 9, the model & data noises are negligible compared to
the anomaly error in an abnormal context, while the noises are lower than the detection threshold in the
nominal situation due to normalization of the variance. Therefore, the anomaly score St discriminates
(|St | > 1) statistical anomalies from a contextual confidence interval defined for a confidence thresholdβ
with particular consideration for the risk of prediction unreliability according to a specified critical value
α (misprediction risk aversion).

C Additional mathemathical justification :

C.1 Notation

NOTATIONS

Basic term
t index associated with a time step of a time series
k index associated to a member (submodel) of a metamodel
N number of samples (time series)
m number of submodels in a metamodel
â Estimation of the quantity a
a Average of the quantity a (often used on a set of estimations)
ML Modeling variable
yt the value of the series y (ground truth) at time step t
f function expressing the explainable part of the series y
ct ,ht exogenous variables (observed, hidden) impacting the time series yt

Y past
t lagged endogenous variables from series y used for forecasting of future values

xt the input data at time stamps t composed in our framework by (ct ,Y past
t )

D,Dθ dataset composed of pairs (X1, y1), .., (XN , yN ), and subset of dataset used to train a model
Θ Ensemble of parameters set
θ,θi ,θ∗ parameters set (resp one, the i th , the "optimal") fromΘ

f̂θ(xt ) = ŷt a ML model (function approximation) parametrized by θ with x as inputs and providing ŷ as output
UQ modeling term
δ abstract diversity infusion mechanism allowing the exploration ofΘ space (ex bootstrap).
M ,M c ,M d metamodel, control metamodel, degraded metamodel impacted by a variability injection
εu ,εΘ,εθ Noise (uncertainty) link respectively to upstream sources, modeling constraint, and epistemic issues
σA

t ,σE
t Variance (Aleatoric, Epistemic), at step t

model and meta-model output

f̂θ(xt ) = (ŷθt , σ̂A,θ
t ) Outputs (Forecast and aleatoric estimation) corresponding to submodel θ at time step t

M(xt ) = (y ,σA
t , σ̂E

t ) Outputs (Forecast, aleatoric, epistemic estimation) corresponding to metamodel M θ at time step t
Experimental modeling term
I e

t disentangled Epistemic indicator (dE-Indicator)
Xn ,Xa nominal query without changes, altered queries that are degraded by variability injection

C.2 Biais-variance trade-off and total uncertainty law:

Taking up the formalization introduced in the paper, we introduced three aleatoric variable that can each
be associated with a specific source of errors in the Biais-variance trade off.

• εu
t = yt − f (xt ) the noise upstream the modeling scope associated with intrinsic irreducible variability

errors, that corresponds to the difference between the series Y, and its explainable part f according to
the modeling scope S.
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• εΘt = f (xt )− f ∗
Θ (xt ) the modeling-constraint noise, related to bias errors due to the exploration spaceΘ,

that correspond to the difference between the explainable part f − of data and the optimal reachable
function f ∗

Θ inΘ.

• εθt = f ∗
Θ (xt )− f̂θ(xt ) the epistemic noise, related to variance errors, that correspond to the difference

between the optimal reachable function f ∗
Θ inΘ, and the obtained model f̂θ which is biased by limited

dataset Dθ.

This modeling frame provides us with an artificial way to decompose the series y according to a
model, and its different sources of errors :

With: yt = f (xt )+εu
t = f ∗

Θ (xt )+εΘt +εu
t = f̂θ(xt )+εθt +εΘt +εu

t (10)

This modeling frame provides us with an artificial way to decompose the series y according to a
model, and its different sources of errors. It can then be rejected in the total law of uncertainty decom-
position to analyze how this term impacts an aleatoric versus epistemic decomposition :

With σ(yt |xt ;θ) =σΘ
[
Ey (yt |xt ;θ)

]+EΘ

[
σy (yt |xt ;θ)

]=σE
t +σA

t

σE
t

if ind.= σΘ[Ey [ f̂ θk
Θ

(xt )]]︸ ︷︷ ︸
EΘ

[(
f ∗
Θ

(xt )− f̂θ(xt )
)2

]+σΘ[Ey [εΘt ]︸ ︷︷ ︸
0∗

]+σΘ[Ey [εu
t ]︸ ︷︷ ︸

0∗

]+σΘ[Ey [εθt ]︸ ︷︷ ︸
0∗

]

σA
t

if ind.= EΘ[σy ( f θk (xt ))︸ ︷︷ ︸
0

]+ σy (εΘt )︸ ︷︷ ︸
modeli ng

+ σy (εu
t )︸ ︷︷ ︸

upstr eam

+EΘ[Ey (εθt −Ey [εθt ]︸ ︷︷ ︸
0∗

)2]

︸ ︷︷ ︸
0∗

(11)

Two types of assumption allow making simplification. We can consider that the random variables are
independent (ind.), obtaining independent terms, then consider that the different random variables are
centered (for different reasons), which makes the terms negligible.

C.3 dE-Indicator development

By manipulating dUQ framework under assumptions about aleatoric and epistemic uncertainty, we can
design predictive indicators from metamodel likelihood using the assumption A1: the submodels en-
semble of metamodel is well-formed, which means rich in variability ∀(k,k ′) wi th k ̸= k ′ d(θk ,θk ′

) > ϵ
and composed of submodels with good predictions and with few overfitting ∀ k, fθk ∈Θ. Starting from
the normal log-likelihood using total variance σtot :

A1 submodel-ensemble approx

NLL developpement

ln(L(y t ,�σtot
t ;Θ, yt )) = ln(P (yt ; y t ,�σtot

t |Θ))

≈ ln(P (yt ; y t ,�σtot
t |{θk }k∈[1,m]))

= cst − l n(�σtot
t )− (yt−y t )2

2∗�σtot
t

(12)

A local likelihood of the metamodel on the training set can be approximated under:

• the normal-aleatoric assumption yt ∼N (y t ,σa)
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• the normal-epistemic assumptions µ∗
t ∼N (y t ,σe )

• the A2 assumption of a local unbiased capture based on the ability of the submodels to perform local
estimation in a standard ML-framework.

We can derive the A2 assumption of a "local unbiased capture performed by submodels" by combining
a standard ML-framework and normal-aleatoric assumption.

A2: Local neigboor observation approx: yt ≈
∫ ∑

k
fθk (xt )d x ≈

∫
yt d y

Formula 5 + yt ∼ A2

y t : Local MLE by NLL loss minization

l n(L(y t ,�σtot
t ;Θ, yt )) ≈ cst − ln(�σtot

t )− (yt−y t )2

2∗�σtot
t

≈ cst − ln(�σtot
t )− (

∫
yt d y−y t )2

2∗�σtot
t

≈ cst − ln(σtot
t )+0

≈ cst − ln(σa
t + σ̂e

t )+0

L(y t ,�σtot
t |Θ)) ∝ 1

σa
t+σ̂e

t

(13)

A local epistemic likelihood of the “average-submodel” mean among the reachable and relevant mod-
els Θ can also be obtained under the A3 assumption of “local unbiased mean modelling approximation”
stemming from the combination of the A1 assumption and normal-epistemic assumptions.

A3 Local mean modelling approx: µ∗
t ≈

∫
Θ

ŷk
t

m
≈

m∑
k=1

ŷk
t

m

Formula 5 + µ∗t ∼ A3

y t : local MLE

ln(L(y t , σ̂e
t |Θ,µ∗

t ) = cst − l n(σ̂e
t )− (µ∗t −y t )2

2∗σ̂e

≈ cst − l n(σ̂e
t )−

(∑m
k=1

ŷk
t

m −y t

)2

2∗σ̂e

= cst − l n(σ̂e
t ) −0

L(y t , σ̂e
t |Θ) ∝ 1

σ̂e
t

(14)

Finally, we are more specifically interested in the fluctuation of the local epistemic likelihood of the
decision regarding local forecasting uncertainty to be more “invariant” to the magnitude of local fore-
casting uncertainty. Therefore, we propose to analyze the local epistemic likelihood indicator (Formula
14) normalized by the local total likelihood indicator (Formula 13).

Lepi (y t , σ̂e
t |Θ)

Ltot (y t ,�σtot
t |Θ)

∝ σa
t + σ̂e

t

σ̂e
t

l n(
Lepi

Ltot ) ∝ ln(σa
t + σ̂e

t )− ln(σ̂e
t )

∝ ln(1+ σ̂a
t

σe
t

)

(15)
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