tdaad.utils package๏
Submodules๏
tdaad.utils.local_elliptic_envelope module๏
Pandas Elliptic Envelope.
- tdaad.utils.local_elliptic_envelope.pandas_mahalanobis(self, X)[source]๏
Compute the negative Mahalanobis distances of embedding matrix X.
- Parameters:
X (array-like of shape (n_samples, n_features)) โ The embedding matrix.
- Returns:
negative_mahal_distances โ Opposite of the Mahalanobis distances.
- Return type:
pandas.DataFrame of shape (n_samples,)
- tdaad.utils.local_elliptic_envelope.pandas_score_samples(self, X)[source]๏
Compute the negative Mahalanobis distances.
- Parameters:
X (array-like of shape (n_samples, n_features)) โ The data matrix.
- Returns:
negative_mahal_distances โ Opposite of the Mahalanobis distances.
- Return type:
array-like of shape (n_samples,)
tdaad.utils.local_pipeline module๏
Window Functions.
- class tdaad.utils.local_pipeline.LocalPipeline(steps, *, transform_input=None, memory=None, verbose=False)[source]๏
Bases:
Pipeline
Local pipeline modification for added functionality.
- set_score_request(*, sample_weight: bool | None | str = '$UNCHANGED$') LocalPipeline ๏
Configure whether metadata should be requested to be passed to the
score
method.Note that this method is only relevant when this estimator is used as a sub-estimator within a meta-estimator and metadata routing is enabled with
enable_metadata_routing=True
(seesklearn.set_config()
). Please check the User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed toscore
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it toscore
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
- sample_weightstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
sample_weight
parameter inscore
.
- selfobject
The updated object.
tdaad.utils.remapping_functions module๏
Remapping Functions.
tdaad.utils.window_functions module๏
Window Functions.
- tdaad.utils.window_functions.sliding_window_ppl(data, pipeline, step=5, window_size=120)[source]๏
Applies a pipeline to timeseries data chunks using the Sliding Window algorithm.
@param data: pd.DataFrame with index to apply named_pipeline to. @param window_size: size of the sliding window algorithm to extract subsequences as input to named_pipeline. @param step: size of the sliding window steps between each window. @param pipeline: pipeline (sequence of operators that have a name attribute) to apply to each window. @return: pd.DataFrame that maps data to the result of applying named_pipeline to window view of data.