Coverage for robustML/advertrain/dependencies/trades.py: 59%
56 statements
« prev ^ index » next coverage.py v7.9.2, created at 2025-09-10 08:11 +0000
« prev ^ index » next coverage.py v7.9.2, created at 2025-09-10 08:11 +0000
1"""
2Taken from https://github.com/yaodongyu/TRADES
4MIT License
5"""
7import torch
8import torch.nn as nn
9import torch.nn.functional as F
10import torch.optim as optim
11from torch.autograd import Variable
14def squared_l2_norm(x: torch.Tensor) -> torch.Tensor:
15 """
16 Compute the squared L2 norm of a tensor.
18 Args:
19 x (torch.Tensor): The input tensor.
21 Returns:
22 torch.Tensor: The squared L2 norm of the flattened input tensor.
23 """
24 flattened = x.view(x.unsqueeze(0).shape[0], -1)
25 return (flattened ** 2).sum(1)
28def l2_norm(x: torch.Tensor) -> torch.Tensor:
29 """
30 Compute the L2 norm of a tensor.
32 Args:
33 x (torch.Tensor): The input tensor.
35 Returns:
36 torch.Tensor: The L2 norm of the input tensor.
37 """
38 return squared_l2_norm(x).sqrt()
41def trades_loss(
42 model: nn.Module,
43 x_natural: torch.Tensor,
44 y: torch.Tensor,
45 optimizer: torch.optim.Optimizer,
46 step_size: float = 0.003,
47 epsilon: float = 0.031,
48 perturb_steps: int = 10,
49 beta: float = 1.0,
50 distance: str = "l_inf",
51 device: torch.device = None
52) -> torch.Tensor:
53 """
54 Calculate the TRADES loss for training robust models.
56 Args:
57 model (nn.Module): The neural network model.
58 x_natural (torch.Tensor): Natural (clean) inputs.
59 y (torch.Tensor): Target outputs.
60 optimizer (torch.optim.Optimizer): Optimizer for the model.
61 step_size (float, optional): Step size for perturbation. Defaults to 0.003.
62 epsilon (float, optional): Perturbation limit. Defaults to 0.031.
63 perturb_steps (int, optional): Number of perturbation steps. Defaults to 10.
64 beta (float, optional): Regularization parameter for TRADES. Defaults to 1.0.
65 distance (str, optional): Norm for perturbation ('l_inf' or 'l_2'). Defaults to 'l_inf'.
66 device (torch.device, optional): The device to use (e.g., 'cuda' or 'cpu').
68 Returns:
69 torch.Tensor: The TRADES loss.
70 """
71 # define KL-loss
72 criterion_kl = nn.KLDivLoss(size_average=False)
73 model.eval()
74 batch_size = len(x_natural)
75 # generate adversarial example
76 if "cuda" in str(device):
77 x_adv = x_natural.detach() + 0.001 * torch.randn(x_natural.shape).cuda(device).detach()
78 else:
79 x_adv = x_natural.detach() + 0.001 * torch.randn(x_natural.shape).detach()
80 if distance == "l_inf":
81 for _ in range(perturb_steps):
82 x_adv.requires_grad_()
83 with torch.enable_grad():
84 loss_kl = criterion_kl(
85 F.log_softmax(model(x_adv), dim=1),
86 F.softmax(model(x_natural), dim=1),
87 )
88 grad = torch.autograd.grad(loss_kl, [x_adv])[0]
89 x_adv = x_adv.detach() + step_size * torch.sign(grad.detach())
90 x_adv = torch.min(
91 torch.max(x_adv, x_natural - epsilon), x_natural + epsilon
92 )
93 x_adv = torch.clamp(x_adv, 0.0, 1.0)
94 elif distance == "l_2":
95 if "cuda" in str(device):
96 delta = 0.001 * torch.randn(x_natural.shape).cuda(device).detach()
97 else:
98 delta = 0.001 * torch.randn(x_natural.shape).detach()
99 delta = Variable(delta.data, requires_grad=True)
101 # Setup optimizers
102 optimizer_delta = optim.SGD([delta], lr=epsilon / perturb_steps * 2)
104 for _ in range(perturb_steps):
105 adv = x_natural + delta
107 # optimize
108 optimizer_delta.zero_grad()
109 with torch.enable_grad():
110 loss = (-1) * criterion_kl(
111 F.log_softmax(model(adv), dim=1), F.softmax(model(x_natural), dim=1)
112 )
113 loss.backward()
114 # renorming gradient
115 grad_norms = delta.grad.view(batch_size, -1).norm(p=2, dim=1)
116 delta.grad.div_(grad_norms.view(-1, 1, 1, 1))
117 # avoid nan or inf if gradient is 0
118 if (grad_norms == 0).any():
119 delta.grad[grad_norms == 0] = torch.randn_like(
120 delta.grad[grad_norms == 0]
121 )
122 optimizer_delta.step()
124 # projection
125 delta.data.add_(x_natural)
126 delta.data.clamp_(0, 1).sub_(x_natural)
127 delta.data.renorm_(p=2, dim=0, maxnorm=epsilon)
128 x_adv = Variable(x_natural + delta, requires_grad=False)
129 else:
130 x_adv = torch.clamp(x_adv, 0.0, 1.0)
131 model.train()
133 x_adv = Variable(torch.clamp(x_adv, 0.0, 1.0), requires_grad=False)
134 # zero gradient
135 optimizer.zero_grad()
136 # calculate robust loss
137 logits = model(x_natural)
138 loss_natural = F.cross_entropy(logits, y)
139 loss_robust = (1.0 / batch_size) * criterion_kl(
140 F.log_softmax(model(x_adv), dim=1), F.softmax(model(x_natural), dim=1)
141 )
142 loss = loss_natural + beta * loss_robust
143 return loss