Source code for advertrain.dependencies.dropblock

"""
Taken from https://github.com/rwightman/pytorch-image-models

MIT License
"""
import torch
import torch.nn as nn
import torch.nn.functional as F


[docs] def drop_block_2d( x, drop_prob: float = 0.1, block_size: int = 7, gamma_scale: float = 1.0, with_noise: bool = False, inplace: bool = False, batchwise: bool = False, ): """DropBlock. See https://arxiv.org/pdf/1810.12890.pdf DropBlock with an experimental gaussian noise option. This layer has been tested on a few training runs with success, but needs further validation and possibly optimization for lower runtime impact. """ B, C, H, W = x.shape total_size = W * H clipped_block_size = min(block_size, min(W, H)) # seed_drop_rate, the gamma parameter gamma = ( gamma_scale * drop_prob * total_size / clipped_block_size ** 2 / ((W - block_size + 1) * (H - block_size + 1)) ) # Forces the block to be inside the feature map. w_i, h_i = torch.meshgrid( torch.arange(W).to(x.device), torch.arange(H).to(x.device) ) valid_block = ( (w_i >= clipped_block_size // 2) & (w_i < W - (clipped_block_size - 1) // 2) ) & ((h_i >= clipped_block_size // 2) & (h_i < H - (clipped_block_size - 1) // 2)) valid_block = torch.reshape(valid_block, (1, 1, H, W)).to(dtype=x.dtype) if batchwise: # one mask for whole batch, quite a bit faster uniform_noise = torch.rand((1, C, H, W), dtype=x.dtype, device=x.device) else: uniform_noise = torch.rand_like(x) block_mask = ((2 - gamma - valid_block + uniform_noise) >= 1).to(dtype=x.dtype) block_mask = -F.max_pool2d( -block_mask, kernel_size=clipped_block_size, # block_size, stride=1, padding=clipped_block_size // 2, ) if with_noise: normal_noise = ( torch.randn((1, C, H, W), dtype=x.dtype, device=x.device) if batchwise else torch.randn_like(x) ) if inplace: x.mul_(block_mask).add_(normal_noise * (1 - block_mask)) else: x = x * block_mask + normal_noise * (1 - block_mask) else: normalize_scale = ( block_mask.numel() / block_mask.to(dtype=torch.float32).sum().add(1e-7) ).to(x.dtype) if inplace: x.mul_(block_mask * normalize_scale) else: x = x * block_mask * normalize_scale return x
[docs] def drop_block_fast_2d( x: torch.Tensor, drop_prob: float = 0.1, block_size: int = 7, gamma_scale: float = 1.0, with_noise: bool = False, inplace: bool = False, batchwise: bool = False, ): """DropBlock. See https://arxiv.org/pdf/1810.12890.pdf DropBlock with an experimental gaussian noise option. Simplied from above without concern for valid block mask at edges. """ B, C, H, W = x.shape total_size = W * H clipped_block_size = min(block_size, min(W, H)) gamma = ( gamma_scale * drop_prob * total_size / clipped_block_size ** 2 / ((W - block_size + 1) * (H - block_size + 1)) ) if batchwise: # one mask for whole batch, quite a bit faster block_mask = torch.rand((1, C, H, W), dtype=x.dtype, device=x.device) < gamma else: # mask per batch element block_mask = torch.rand_like(x) < gamma block_mask = F.max_pool2d( block_mask.to(x.dtype), kernel_size=clipped_block_size, stride=1, padding=clipped_block_size // 2, ) if with_noise: normal_noise = ( torch.randn((1, C, H, W), dtype=x.dtype, device=x.device) if batchwise else torch.randn_like(x) ) if inplace: x.mul_(1.0 - block_mask).add_(normal_noise * block_mask) else: x = x * (1.0 - block_mask) + normal_noise * block_mask else: block_mask = 1 - block_mask normalize_scale = ( block_mask.numel() / block_mask.to(dtype=torch.float32).sum().add(1e-7) ).to(dtype=x.dtype) if inplace: x.mul_(block_mask * normalize_scale) else: x = x * block_mask * normalize_scale return x
[docs] class DropBlock2d(nn.Module): """DropBlock. See https://arxiv.org/pdf/1810.12890.pdf""" def __init__( self, drop_prob=0.1, block_size=7, gamma_scale=1.0, with_noise=False, inplace=False, batchwise=False, fast=True, ): super(DropBlock2d, self).__init__() self.drop_prob = drop_prob self.gamma_scale = gamma_scale self.block_size = block_size self.with_noise = with_noise self.inplace = inplace self.batchwise = batchwise self.fast = fast # FIXME finish comparisons of fast vs not
[docs] def forward(self, x): if not self.training or not self.drop_prob: return x if self.fast: return drop_block_fast_2d( x, self.drop_prob, self.block_size, self.gamma_scale, self.with_noise, self.inplace, self.batchwise, ) else: return drop_block_2d( x, self.drop_prob, self.block_size, self.gamma_scale, self.with_noise, self.inplace, self.batchwise, )