Coverage for robustAI/advertrain/dependencies/dropblock.py: 79%
62 statements
« prev ^ index » next coverage.py v7.9.2, created at 2025-10-01 08:42 +0000
« prev ^ index » next coverage.py v7.9.2, created at 2025-10-01 08:42 +0000
1"""
2Taken from https://github.com/rwightman/pytorch-image-models
4MIT License
5"""
6import torch
7import torch.nn as nn
8import torch.nn.functional as F
11def drop_block_2d(
12 x,
13 drop_prob: float = 0.1,
14 block_size: int = 7,
15 gamma_scale: float = 1.0,
16 with_noise: bool = False,
17 inplace: bool = False,
18 batchwise: bool = False,
19):
20 """DropBlock. See https://arxiv.org/pdf/1810.12890.pdf
21 DropBlock with an experimental gaussian noise option. This layer has been tested on a few training
22 runs with success, but needs further validation and possibly optimization for lower runtime impact.
23 """
24 B, C, H, W = x.shape
25 total_size = W * H
26 clipped_block_size = min(block_size, min(W, H))
27 # seed_drop_rate, the gamma parameter
28 gamma = (
29 gamma_scale
30 * drop_prob
31 * total_size
32 / clipped_block_size ** 2
33 / ((W - block_size + 1) * (H - block_size + 1))
34 )
36 # Forces the block to be inside the feature map.
37 w_i, h_i = torch.meshgrid(
38 torch.arange(W).to(x.device), torch.arange(H).to(x.device)
39 )
40 valid_block = (
41 (w_i >= clipped_block_size // 2) & (w_i < W - (clipped_block_size - 1) // 2)
42 ) & ((h_i >= clipped_block_size // 2) & (h_i < H - (clipped_block_size - 1) // 2))
43 valid_block = torch.reshape(valid_block, (1, 1, H, W)).to(dtype=x.dtype)
45 if batchwise:
46 # one mask for whole batch, quite a bit faster
47 uniform_noise = torch.rand((1, C, H, W), dtype=x.dtype, device=x.device)
48 else:
49 uniform_noise = torch.rand_like(x)
50 block_mask = ((2 - gamma - valid_block + uniform_noise) >= 1).to(dtype=x.dtype)
51 block_mask = -F.max_pool2d(
52 -block_mask,
53 kernel_size=clipped_block_size, # block_size,
54 stride=1,
55 padding=clipped_block_size // 2,
56 )
58 if with_noise:
59 normal_noise = (
60 torch.randn((1, C, H, W), dtype=x.dtype, device=x.device)
61 if batchwise
62 else torch.randn_like(x)
63 )
64 if inplace:
65 x.mul_(block_mask).add_(normal_noise * (1 - block_mask))
66 else:
67 x = x * block_mask + normal_noise * (1 - block_mask)
68 else:
69 normalize_scale = (
70 block_mask.numel() / block_mask.to(dtype=torch.float32).sum().add(1e-7)
71 ).to(x.dtype)
72 if inplace:
73 x.mul_(block_mask * normalize_scale)
74 else:
75 x = x * block_mask * normalize_scale
76 return x
79def drop_block_fast_2d(
80 x: torch.Tensor,
81 drop_prob: float = 0.1,
82 block_size: int = 7,
83 gamma_scale: float = 1.0,
84 with_noise: bool = False,
85 inplace: bool = False,
86 batchwise: bool = False,
87):
88 """DropBlock. See https://arxiv.org/pdf/1810.12890.pdf
89 DropBlock with an experimental gaussian noise option. Simplied from above without concern for valid
90 block mask at edges.
91 """
92 B, C, H, W = x.shape
93 total_size = W * H
94 clipped_block_size = min(block_size, min(W, H))
95 gamma = (
96 gamma_scale
97 * drop_prob
98 * total_size
99 / clipped_block_size ** 2
100 / ((W - block_size + 1) * (H - block_size + 1))
101 )
103 if batchwise:
104 # one mask for whole batch, quite a bit faster
105 block_mask = torch.rand((1, C, H, W), dtype=x.dtype, device=x.device) < gamma
106 else:
107 # mask per batch element
108 block_mask = torch.rand_like(x) < gamma
109 block_mask = F.max_pool2d(
110 block_mask.to(x.dtype),
111 kernel_size=clipped_block_size,
112 stride=1,
113 padding=clipped_block_size // 2,
114 )
116 if with_noise:
117 normal_noise = (
118 torch.randn((1, C, H, W), dtype=x.dtype, device=x.device)
119 if batchwise
120 else torch.randn_like(x)
121 )
122 if inplace:
123 x.mul_(1.0 - block_mask).add_(normal_noise * block_mask)
124 else:
125 x = x * (1.0 - block_mask) + normal_noise * block_mask
126 else:
127 block_mask = 1 - block_mask
128 normalize_scale = (
129 block_mask.numel() / block_mask.to(dtype=torch.float32).sum().add(1e-7)
130 ).to(dtype=x.dtype)
131 if inplace:
132 x.mul_(block_mask * normalize_scale)
133 else:
134 x = x * block_mask * normalize_scale
135 return x
138class DropBlock2d(nn.Module):
139 """DropBlock. See https://arxiv.org/pdf/1810.12890.pdf"""
141 def __init__(
142 self,
143 drop_prob=0.1,
144 block_size=7,
145 gamma_scale=1.0,
146 with_noise=False,
147 inplace=False,
148 batchwise=False,
149 fast=True,
150 ):
151 super(DropBlock2d, self).__init__()
152 self.drop_prob = drop_prob
153 self.gamma_scale = gamma_scale
154 self.block_size = block_size
155 self.with_noise = with_noise
156 self.inplace = inplace
157 self.batchwise = batchwise
158 self.fast = fast # FIXME finish comparisons of fast vs not
160 def forward(self, x):
161 if not self.training or not self.drop_prob:
162 return x
163 if self.fast:
164 return drop_block_fast_2d(
165 x,
166 self.drop_prob,
167 self.block_size,
168 self.gamma_scale,
169 self.with_noise,
170 self.inplace,
171 self.batchwise,
172 )
173 else:
174 return drop_block_2d(
175 x,
176 self.drop_prob,
177 self.block_size,
178 self.gamma_scale,
179 self.with_noise,
180 self.inplace,
181 self.batchwise,
182 )