Source code for neural_de.transformations.diffusion.unet.utils

import torch.nn as nn


[docs] def convert_module_to_f16(ll): """ Convert primitive modules to float16. """ if isinstance(ll, (nn.Conv1d, nn.Conv2d, nn.Conv3d)): ll.weight.data = ll.weight.data.half() if ll.bias is not None: ll.bias.data = ll.bias.data.half()
[docs] def convert_module_to_f32(ll): """ Convert primitive modules to float32, undoing convert_module_to_f16(). """ if isinstance(ll, (nn.Conv1d, nn.Conv2d, nn.Conv3d)): ll.weight.data = ll.weight.data.float() if ll.bias is not None: ll.bias.data = ll.bias.data.float()