dqm package
Subpackages
- dqm.completeness package
- dqm.diversity package
- dqm.domain_gap package
- dqm.representativeness package
- Submodules
- dqm.representativeness.metric module
- dqm.representativeness.utils module
DiscretisationParamsVariableAnalysisVariableAnalysis.variable_counting()VariableAnalysis.countplot()VariableAnalysis.discretisation()VariableAnalysis.normal_discretization()VariableAnalysis.data_processing_for_chisqure_test()VariableAnalysis.uniform_discretization()VariableAnalysis.discretisation_intervals()VariableAnalysis.delete_na()VariableAnalysis.expected()VariableAnalysis.expected_hist()VariableAnalysis.observed_hist()VariableAnalysis.countplot()VariableAnalysis.data_processing_for_chisqure_test()VariableAnalysis.delete_na()VariableAnalysis.discretisation()VariableAnalysis.discretisation_intervals()VariableAnalysis.expected()VariableAnalysis.normal_discretization()VariableAnalysis.observed_hist()VariableAnalysis.uniform_discretization()VariableAnalysis.variable_counting()
- Module contents
- dqm.utils package
Submodules
dqm.main module
This script is the entry point for using DQM with command line and docker
- dqm.main.load_dataframe(config_dict)[source]
This function loads a pandas dataframe from the config dict passed as input. This config dict comes from a pipeline configuration: An example of such pipeline is present in examples/ folder
- Parameters:
config_dict (dict) – Dict containing a metric configuration